The Assessment of a Risk Management Implementation in Saudi Construction Industry

Mohammad Malhan Abnbsayes,

Graduate student, University of Ha'il College of Engineering Department of Quality Engineering.

Dr. Abdul Hafiz Jones,

PMP, Assistant Professor University of Ha'il College of Business Administration Department of MIS.

Abstract

This study shows how an organizational and external environmental factor contributes to construction project failures within the Kingdom of Saudi Arabia. A 45-Item Questionnaire was distributed to 68 contractors, surveyors, and construction project managers in KSA. A principal component analysis was performed which produced five factors measuring the contribution of organizational and external environmental factors to the failure of construction projects in KSA. Questions related to competitive threats, company health, and productivity and infrastructure inadequate tools represented the highest commonalities scores of .81, .78, and .79. The findings indicate an existing contribution of organizational and external environmental factors in project failures in the KSA construction industry.

Keywords: Organizational Process Assets, External Environmental Factors, Construction Projects, Saudi Arabia

Type of Article: Quantitative Research (Principle Component Analysis).

Introduction

Background

Saudi Arabia, as a member of the G20, has been one of the biggest economies in the Middle East within the last four decades. In fact, Algahtany, Alhammadi,&Kashiwagi, (2016) referenced the construction industry as an indicator of growth by stating, "The public construction sector in Saudi Arabia is considered as the biggest in the Gulf countries with \$575 million spent on public construction projects between 2008 and 2013." However contrary to the huge spending on construction projects, in 2015 it was reported that several construction engineering companies had sanctions levied against them for failure to complete government-awarded projects valued at \$69 billion SAR in KSA (Arab News, April 28, 2015). The companies refused to answer any inquiries levied by the government. No project management related reasons were stated or reported pertaining to the why these projects failed. A year prior to this news, a report was conducted on the KSA construction industry aimed at classifying and identifying project failures (Ikediashi, Ogunlana, & Alotaibi, 2014). This report was conducted on 67 respondents with many years of experience in civil engineering, architecture, surveyorship and building engineering of infrastructure projects in Saudi Arabia. The findings showed risk management was ranked the highest in critical failure factors for infrastructure projects, while budget overruns and poor communication by management followed closely at second and third, respectively. Both of these reports speak of another underlining cause of project failure in addition to the typical project management related causes of cost, time, scope and quality. This study examines the impact of organizational and external factors on construction projects in the Kingdom of Saudi Arabia.

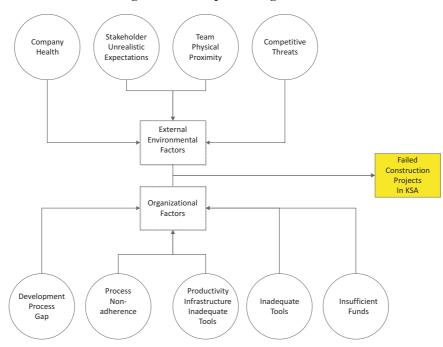
Regardless of the typical project management's factors that influence risk inside the construction industry in KSA, the organizational factors are just as important. However, unlike the project management factors, the organizational and external factors go unnoticed and almost never addressed in prior research on root causes of project management failures. This study looks at the organizational and external factors that impact construction projects in KSA based on the survey responses by professionals in the industry. This study examines the external factors of industry and market mismatch, development process gaps, process non adherence, productivity and infrastructure inadequate tools, inadequate training, project resources, insufficient funds, competitive threats, team physical proximity, company health, and unrealistic stakeholders' expectations and layout a framework for a risk assessment tool for predicting future project failures with a significant degree of accuracy in the Kingdom of Saudi Arabia (KSA) construction industry.

The roadmap of this study going forward, establishes the definition of project failure in the construction industry. Second, this study looks at the frequency of occurrence of prior research on the twelve previously mentioned organizational and external factors to support the construction of the survey instrument distributed to the respondents. Third, this research will layout the current state of the construction in KSA in terms of the number of existing companies, private and publicly traded the market capitalization on the Tadawul (The Saudi Exchange) and the common organizational practices within the construction industry. Once all twelve variables are established and represented on the survey instrument, a principle component analysis (PCA), to include Descriptives and a correlation will be conducted. Finally, the findings will be presented as a tool to be applied to construction projects in KSA to access the level of organizational and external factors' impact as risk assessment of project failure.

Research Questions

The research questions established in this study were developed from the underpinnings of the prior studies

related to the organizational and external environmental factors of company health, unrealistic stakeholders' expectations, development process gaps, process nonadherence, productivity and infrastructure inadequate tools, inadequate training, project resources, insufficient funds, competitive threats, and team physical proximity (Bissonette, 2016; Hughes, Rana, & Simintiras, 2017; Moshodi, Coetzee, Fourie, & Africa, 1996; Oehmen, Olechowski, Robert Kenley, & Ben-Daya, 2014; Olander, 2007; Olechowski, Oehmen, Seering, & Ben-Daya, 2016; Van Thuyet, Ogunlana, & Dey, 2007). Figure 1 shows a conceptual diagram of how the item question category comprises each research question.


The first research question:

Can the external factors of company health, unrealistic stakeholders' expectations, team physical proximity, and competitive threats be used as a risk assessment instrument for assessing the level of contribution on project failures in the Kingdom of Saudi Arabia (KSA) construction industry?

This question focuses on the external factors that contribute to project failures.

The second research question:

Can the organizational factors of development process gaps, process non-adherence, productivity and infrastructure inadequate tools, inadequate training, project resources, insufficient funds be used as a risk assessment instrument for assessing the level of contribution on project failures in the Kingdom of Saudi Arabia (KSA) construction industry?

Figure 1: Conceptual Diagram

This question targets the OPAs that reside in the cost structure and their association with project failures.

This research aims to address the contribution of organizational process assets in project failures outside to the common project management pitfalls mentioned in prior research (Boghossian, 2002; Hughes, Rana, & Simintiras, 2017; Ikediashi et al., 2014). To accomplish this objective an analysis of the KSA construction industry and the utilization of their organizational process assets must be discussed. Furthermore, an explanation of the basis for the selected questions for the survey will be

discussed.

INDUSTRYAND LITERATURE REVIEW

KSA Construction industry

As of June 2018, KSA has 720 active construction projects valued at an estimated \$40 Billion USD (Onsite, 2018). The construction industry in KSA is categorized into three sections, buildings, infrastructure, and energy with the buildings section forecast to receive \$18 Million on the estimated \$40Million in 2018. Figure 2 below shows the breakdown of 2018 projected spending.

1 Figure 2: Historical and Current KSA Contractor Awards by Sector

Source: Ventures ONSITE Projects Intelligence Database: www.venturesonsite.com

Since 2015 the construction industry in KSA has steadily grown and is expected to receive 27% of the construction projects award in the Middle East for 2018 (Bhati, 2018).

With the expected inflow of capital, the significance of this study warrants investigation into just how prepared

construction organizations in KSA are to successfully complete projects awarded.

Before discussing prior support of the variables used to identify risk, it needs to be stated what constitutes a failed project. In general, a failed project is a project that violates one of the four areas of possible risk occurrence of a project (Heagney, 2012; Pinto & Slevin, 1988). The project schedule, scope, cost and quality reflect areas whereby the occurrence of risk occurs and the violation in these areas reflect a project being delayed, out of scope, over budget, fails to meet customer expectations or all of the above mentioned. Construction projects in KSA are not immune to these violations and would definitely be classified as failed if one of these violations represent project success.

A project is deemed successful if it is completed on time, within budget, within scope, and the customer is satisfied with the end results(Heagney, 2012; Pinto & Slevin, 1988). This definition of project success is at a very fundamental level of project management. However, in today's world of project management this definition becomes very complex when multiple stakeholders are considered. Projects that have multiple stakeholders may interpret project success different than other stakeholders(Jiang, Klein, & Ellis, 2002; Lagerstrom, von Wurtemberg, Holm, & Luczak, 2012; Suttrfield, Friday-Stroud, & Shivers-Blackwell, 2006). Multiple stakeholders create unrealistic stakeholder expectations which is one of the variables in the theoretical risk assessment instrument in this study(Hughes et al., 2017; Moshodi, Coetzee, Fourie, & Africa, 1996; Olander, 2007).

PMI cites over forty-five processes in direct relations to managing projects with at least forty-five processes requiring an input or output to organizational process assets (PMI, 2018).

Organizational process assets (OPAs) reside within the cost structure of organizations and is leveraged by PM's to successfully complete their projects. Therefore, it is also viewed that OPAs are also factors much like the project schedule, scope, and budget that are potential risks of project failures(Bissonette, 2016). It is under this viewpoint that this study lays out risk factors that originates from the organization as oppose to the lack of project management processes neglect.

Twelve factors that impact project failures which are the basis for how questions were selected for the measurement of instrument (Bissonette, 2016). However, extended research supported nine out of the twelve factors for this study and the use of Principal Component Analysis (PCA) as the statistical process used. All twelve factors are outlined later in this study to include the nine deemed significant for PCA.

Development Process Gaps

Development process gaps (DPG) were identified as a factor resulting from employee turnover (Bissonette, 2016). The results of DGP leaves a void in critical organizational knowledge that affects process changes, which in turn could have detrimental effects (Oehmen et al., 2014). To measure for the impact of this factor in this study, three questions were constructed as part of the 45-

Item Questionnaire as follows:

How often is there a change in management at your organization?

How often is there a change of supervisors or project managers during a construction project?

How often do experienced supervisors or project managers make mistakes on construction projects?

These three questions were critical in assessing the impact of key employees by identifying the extent of organizational knowledge and the frequency of organizational changes in management.

Process Non-Adherence

Process non-adherence (PNA) is another factor Bissonette (2016) mentions, but as it relates to knowingly deviating from the product development process. Two key questions were added to the questionnaire instrument to measure the extent of deviation given deadlines.

How often have you worked under "tight" deadlines on a construction project?

How often have you worked on construction projects and did not follow standard construction procedures or processes?

These two questionnaires were taking from the underpinnings of Oehmen et al. (2014) methodology of conducting a survey to measure the impact of process non-adherence. Their survey instrument was constructed as a 171-Item Questionnaire which was given to 381 respondents. The area of process non-adherence was under the category of quality of decision making and sub-category of risk management influences tradeoffs. From the 381 respondents, 60 associated organizational risk to management influences.

Productivity and Infrastructure Inadequate Tools

Bissonette (2016) identified productivity infrastructure tools as tools the organizations would be rendered uncompetitive if they did not have them. Othman &Harinarain (2009) went further on the impact of this factor in their study on managing risk of monitoring and controlling the servicing of building contracts in South Africa. Building contracts in South Africa included a multitude of suppliers, subcontractors and construction consultants. Othman & Harinarain (2009) used a questionnaire taken by nine companies. Their study had a common aim of risks related to technical management and failure caused by lack of it. Their conclusion identified the lack of systems to prevent final payment settlements. To address this factor in this study, two questions were added to the 45-Item Questionnaire as follows:

1. How often are process changes made to standard operating procedures for construction projects?

2. How often are more advanced project management "best practices" tools and techniques (i.e., an earned value

management system (EVMS) that supports effective cost and schedule management) implored?

Competitive Threats

Another factor that was included in this study was competitive threats. Bissonette (2016) looked at this factor from the customer's perspective. Although there were no prior literature of competitive threats in the KSA construction industry, two questions were added focusing on the common external and internal activities pertaining to construction project bids in KSA (Bhati, 2018; Ikediashi, Ogunlana, &Alotaibi, 2014)..

1. How often is your organization competing for bids on construction projects with competitors?

2. How often is your organization permitting internal competition on construction projects?

Competitive Health

Another factor that was included in this study was competitive threats. Bissonette (2016) looked at this factor from the customer's perspective. Although there was no prior literature of competitive threats in the KSA construction industry, two questions were added focusing on the common external and internal activities pertaining to construction project bids in KSA (Bhati, 2018; Ikediashi, Ogunlana, & Alotaibi, 2014). However, Taghipour, Seraj, & Hassani (2015) takes it further in their study with findings, based on both archival data and questionnaire given to employees in two municipalities in Tehran. Their findings showed lack of handling financial instruments was the biggest risk identified. To account for company health in this study three questions were added.

1. How often is your organization cancelling ongoing construction projects?

2. How often does your organization institute cost cutting initiatives?

3. How often your organization does changes to its business strategy?

Team Physical Proximity and Unrealistic Stakeholder Expectations

Other questions were added aimed at measuring team physical proximity and unrealistic stakeholder expectations. Momani&Fadil (2013) focused on these two factors from the perspective of economic circumstances and human behavior. Their study used a 80-Item Questionnaire given to 70 respondents at a commercial construction forum held in Jeddah City in May 2011. The findings showed that the financial stakeholders understood potential risk due to human factors more so than all other participants from other industries (Moshodi et al., 1996; Olander, 2007; Xia, Zhong, Wu, Wang, & Wang, 2017). The study further concluded that business continuity awareness must be consistently promoted across all commercial construction projects in KSA.

In terms of actual effect of location Van Thuyet et al. (2007)

conducted study whereby six of Petro Vietnam subsidiaries specializing in oil and gas projects were given a questionnaire aimed at risk identification of the top ten risks in the Vietnamese oil and gas industry. The response rate was 60% based on 72 employees issued the questionnaire. Improper selection of project location and resettlement costs were among the top ten on the second tier of risk identified. The findings showed that both improper selection of project location and resettlement costs issues produced risk index scores of 33% and 35% respectively. To account for any effects to team proximity and additional cost as result of its impact, the following questionnaire:

1. How often is your construction projects located 200KM or more from your place of residence?

2. How often is your construction projects located outside KSA?

3. How often is your construction projects located 200KM or more from your team-members or colleagues places of residencies?

Research Methodology

This research has the underpinning of Bissonette (2016), Hughes, Rana, &Simintiras, (2017), Moshodi, Coetzee, Fourie, & Africa (1996), Oehmen, Olechowski, Robert Kenley, & Ben-Daya (2014); Olander (2007), Olechowski, Oehmen, Seering, & Ben-Daya (2016), Van Thuyet, Ogunlana, &Dey (2007) to construct a 45-Item Questionnaire that aims to group the twelve factors previously introduced using PCA, into a small set of factors. The small set of factors represent set values of linearly uncorrelated variables that can be used in further studies whereby regression analysis is used to determine influence on construction projects success or failure. This research aims to conduct a data reduction and ranking of new factors that construction organizations in KSA can use to increase overall project success.

As previously stated, 70 respondents were given the 45 Item-Questionnaire. From the 70 respondents, 68 were completed and used to conduct a descriptives, correlation and anti-correlation analysis, and PCA. Table 1 and Figures 3 thru 5 show the demographic breakdown of the respondents. The majority of the respondents had bachelor's degrees between the ages of 36 and 50. The organizational activities performed were more towards contracting as oppose to project management in the construction industry.

Results

As previously mentioned, Table 2 outlines all twelve factors. The results of this study are shown on Tables 3 thru 6. Table 3 shows a significance on the KMO and Bartlett's Test of .807. Bartlett's test of sphericity was statistically significant at (p < .0005), indicating that the data was likely factorizable. The KMO and Bartlett's Test inconjunction with anti-image correlation, Table 7 in Appendix A, was

used to determine the number of significant components to retain.

Out of the 45 variables initially entered, 20 were retained for PCA inclusion. The basis for retaining a variable for inclusion was a R \therefore 3 with any other variable in the table (Lund & Lund, 2015). Table 4 shows the results of the Varimax rotation of the 20 variables, the five factors and their communalities.

Table 5 shows that the PCA revealed five components that had eigen values greater than one and which explained 27.7%, 15.1%, 13.6%, 11.6% and 7.4% of the total variance, respectively. The five-component solution explained 75.4% of the total variance. A Varimax orthogonal rotation was employed to aid interpretability. The interpretation of the data was consistent with the personality attributes as the questionnaire was designed to measure with strong loadings of external environment items on Factors 1 and 4, organizational items on Factors 2, 3, and 5. Factor loadings and communalities of the rotated solution are presented in Table 6.

Factor 1

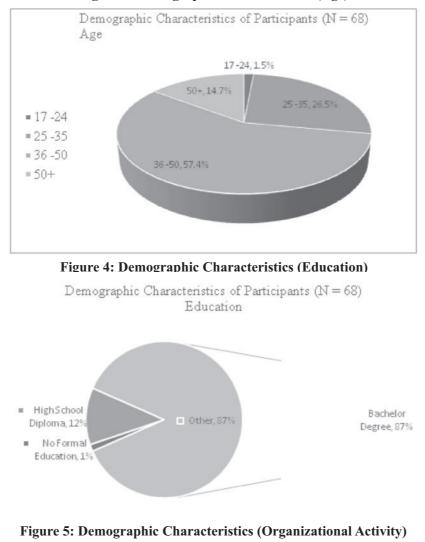
Figure 6 shows this factor consists of six items that focus mainly on competitive threats, team physical proximity, and development process gaps. The internal reliability as a single factor is (α =.40) too low for acceptance. However, if grouped into the three categories of on competitive threats, team physical proximity the internal reliabilities of .86, .74, and .68 respectively.

Factor 2

Factor 2 consists of three items, company health, process non-adherence, and development process gaps. The internal reliability as a single factor is (α =.77). Figure 7 shows how negligence in following standard processes by management contributes to cancelled or failed construction projects in Factor 2.

Factor 3

Factor 3 consists of two items, productivity and infrastructure inadequate tools and process non-adherence. The internal reliability as a single factor is ($\alpha = .73$). Figure 8 shows how Factor 3 revealed the lack of leveraging systems under time constraints, contribute to failed construction projects.


Factor 4

In Figure 9 it shows Factor 4 consists of two questions related to unrealistic stakeholder expectations with regards to ensuring requirements for construction projects are met. Both questions reference the client and project manager as the primary stakeholders. The internal reliability as a single factor is (α =.73).

Factor 5

In Figure 10 it shows Factor 5 consists of two items that are from productivity and infrastructure inadequate tools category. Both questions focus on standard operating procedures adherence and changes. The internal reliability as a single factor is ($\alpha = .73$).

Characteristics	п	%
Age		
17 -24	1	1.5%
25 - 35	18	26.5%
36 - 50	39	57.4%
50+	10	14.7%
Education		
No Formal Education	1	1%
High School Diploma	8	12%
Bachelor's degree	59	87%
Organization Activity		
Contracting	38	56%
Construction & PM	30	44%
Experience (Average)		
20 years		
Tenure (Average)		
12 years		

Figure 3: Demographic Characteristics (Age)

Demographic Characteristics of Participants (N = 68) Organization Activity

Independent Variable	Definition	Reference
Industry Mismatch	Product development processes are established in one industry but not in another [3].	Bissonette, M.(2016)
Market Mismatch	Product development processes are established in one market but used in another which it is not suitable for [3].	Bissonette, M.(2016)
Development Process Gaps	Obviously, employee turnover can leave a void in "corporate history" or "tribal knowledge" that could result in an unfounded process change that turns out to be potentially detrimental to product quality and customer expectations [16].	Oehmen, J., Olechowski, A., Kenley, R., & Ben- Daya, M.(2014)
Process Nonadherence	In the heat of the battle (e.g., to meet deadlines) someone on the frontlines could decide to purposely omit a product development process step that he or she believes is not absolutely necessary [16].	Oehmen, J., Olechowski, A., Kenley, R., & Ben- Daya, M.(2014)
Productivity and Infrastructure Inadequate Tools	The advent of computer and information technology has yielded productivity and infrastructure tools, without which organizations would be rendered uncompetitive in so many of their business endeavors. In addition, given the number of options available, selecting the most appropriate tools, and then implementing them effectively, can be a huge undertaking [20].	Ayman and Harinarain; ActaStructilia 2009: 16(1)
Inadequate Training	Project teams can have access to all the best productivity and infrastructure tools available, but if the workforce personnel who are expected to use them are not adequately trained, these tools could be ineffective and the project can suffer as a result [8].	Ikediashi, Ogunlana&Alotaibi (2014)

Table 2: 45-Item Questionnaire Variables

Table 2 (Continued)

Variable	Definition	Reference
Project Resources	Project resources typically fall into four general categories: funds, time, furnished equipment and facilities, and personnel. Within matrix organization structures, all project resources are typically provided by stakeholders outside the team— customers, sponsors, organizational management, and functional managers [3].	Augustine et al. (2013)(Augustine, Ajayi, Ade, & Edwin, 2013)
Insufficient Funds	Even if the project team is provided all the funds requested for the baseline project plan, they may not suffice. As noted in Chapter 5, all project reserves are not typically built into the project baseline [13].	Momani, N. M., &Fadil, A. S. (2013)
Competitive Threats	Most product development projects in the business world do have to be concerned about competition. Commercial/consumer products and services businesses are typically looking for competitive advantages at all times [3].	Bissonette, M.(2016)
Company Health	An organization's long-term viability can cause financial disruptions and project cancellations in response to cost-cutting initiatives and/or changes in business strategy [25].	Van Thuyet, N., Ogunlana, S. O., &Dey, P. K. (2007)
Team Physical Proximity	The impact of physical proximity; The two extremes are collocated teams and dispersed teams. Dispersed teams tend to require significant management overhead [13].	Momani, N. M., &Fadil, A. S. (2013)
Unrealistic Stakeholder Expectations	This is not healthy (especially for the project team) if one or more of the key stakeholders (i.e., customers and organizational management) plan to hold the project manager and the team to rigid requirements (i.e., for completing the project scope on schedule and within budget without compromise to product quality) nonetheless [14].	Moshodi, T., Coetzee, C., &Fourie, K. (2016)

Table 3: KMO and Bartlett's Test

Kaiser-Meyer-Olkin N	Aeasure of Sampling Adequacy.	.807
Bartlett's Test of	Approx. Chi-Square	907.226
Sphericity	df	190
	Sig.	.000

Table 4: Factor Loadings from PCA: Communalities, Eigenvalues, and Percentages of

Factors	Factor Loadings					Communalities
1 actors	F1	F2	F3	F4	F5	Communanties
CPMT36	.83	.26	16		.17	.81
TPP42	80	.20	16			.71
CPMT35	.80	.30	.19	18	.17	.82
TPP40	78	.31	21	36		.87
DPG8	76	15	41	19	15	.83
DPG9	72	24	13	.37		.72
TPP41	66	.32	27	.36		.75
PNA16	.64	19	.46	.20		.69
USE43	.57	.20	.15	.55	.12	.70
CMPH37	.15	.85		16		.78
PNA15	.36	.74	.30	17		.81
DPG12	33	.73	14	22	22	.77
PIIT29	.22		.73	.12	.14	.63
PNA14	.49		.73		15	.79
PNA17		.47	.66		14	.68
ITRN32	.15	29	.61	.45	.44	.86
USE45		19		.78		.65
USE44	24	22	.22	.75		.73
PIIT25	.27	12			.83	.79
PIIT28	15	.49	.23		.60	.69
Eigenvalues	5.55	3.02	2.72	2.32	1.47	
% of variance	27.77	15.10	13.58	11.59	7.36	

Variance for Items of Construction Questionnaire

CPMT = Competitive Threats, TPP = Team Physical Proximity, DPG = Development Process Gaps, PNA = Process Non - P

Adherence, USE - Unrealistic Stakeholder Expectations, CMPH = Company Health, PIIT = Productivity and Infrastructure

Inadequate Tools, ITRN = Inadequate Training

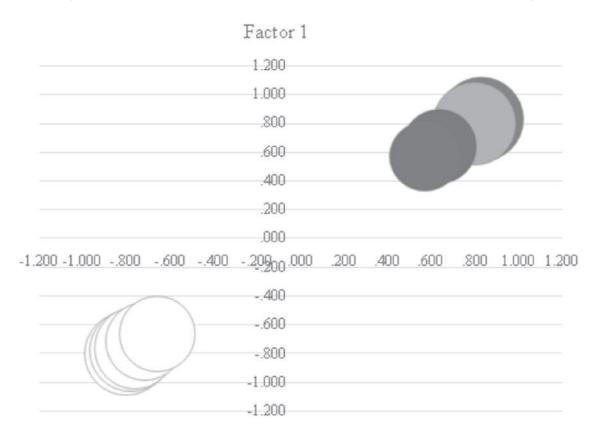


Figure 6: Factor 1 - Rotated Component Matrix Results (CPMT36, TPP42, CPMT35, TPP40, DPG8, DPG9, TPP41, PNA16, & USE43)

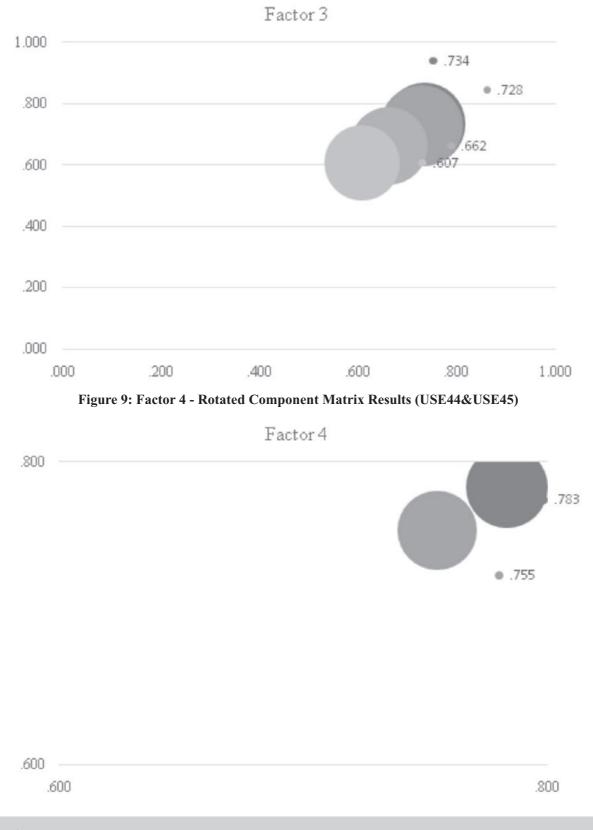
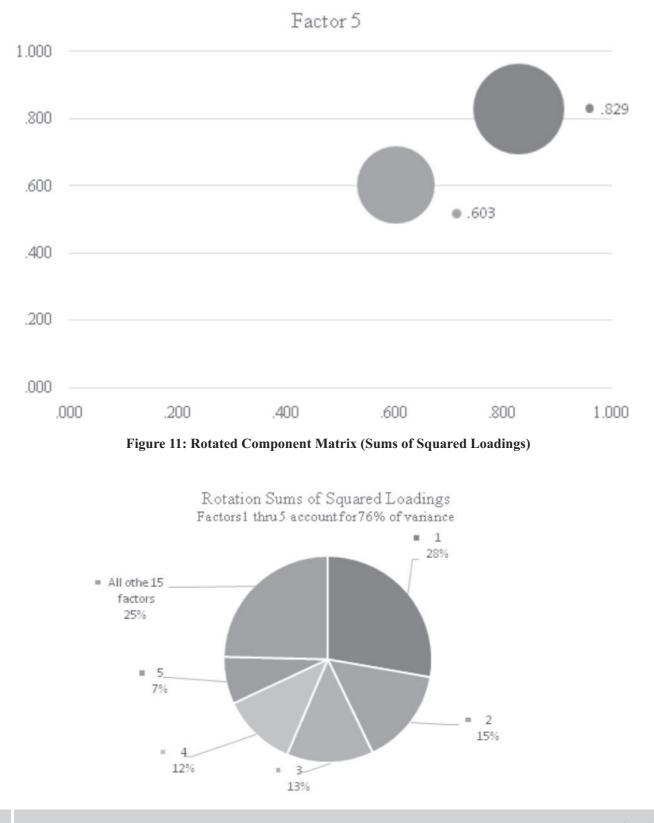



Figure 8: Factor 3 - Rotated Component Matrix Results (PIIT29, PNA14, PNA17, & ITRN32)

Factor	Total	% of Variance	Cumulative %
F1	5.55	27.77	27.77
F2	3.02	15.10	42.87
F3	2.72	13.58	56.44
F4	2.32	11.59	68.03
F5	1.47	7.36	75.40

Table 5: Summary of Eigenvalues, Percentages of Variance, and Cumulative Percentages for Factors of the45-Item Construction Questionnaire

Table 6: PCA with Varimax Rotation and Coefficient Alphas for Factors 1 thru 4 for the

45-Item Construction Questionnaire

Factor	Variables	Question	Factor Loading	Δημία (4)
	СРМТ36	How often is your organization permitting internal competition on construction projects?	0.83	
F1	CPMT35	How often is your organization competing for bids on construction projects with competitors?	0.80	0.86

Factor	Variables	Question	Factor Loading	Alpha (α)
	TPP42	How often are your construction projects located 200KM or more from your team-members or colleagues places of residencies?	-0.80	
F1	TPP40	How often are your construction projects located 200KM or more from your place of residence?	-0.78	0.74

Factor	Variables	Question	Factor Loading	Alpha (α)
	DPG8	How often is there a change in management at your organization?	-0.76	
F1	DPG9	How often is there a change of supervisors or project managers during a construction project?	-0.72	0.68
Factor	Variables	Question	Factor Loading	Alpha (α)
	CMPH37	How often is your organization cancelling ongoing construction projects?	0.85	
F2	PNA15	How often have you worked on construction projects and did not follow standard construction procedures or processes?	0.74	0.77
	DPG12	How often do experienced supervisors or project managers make mistakes on construction projects?	0.73	

Factor	Variables	Question	Factor	Alpha
			Loading	(α)
		How often are more advanced		
		project management from		
		predices" lash and habriques		
	PIIT29	(i.e., as named value	0.73	
E 2		Analysis of the BADI		0.72
F3		Rad separate affordine cost and		0.73
		satedate mongarentij inspirate?		
	PNA14	How often have you worked under "tight" deadlines on a construction project?	0.73	

Factor	Variables	Question	Factor Loading	Alpha (α)
F4	USE45	How often does your client or customer ensure that all requirements (i.e., project scope, schedule or budget) of a construction project are fulfilled no exceptions?	0.78	
	USE44	How often does your supervisor or project manager ensure that all requirements (i.e., project scope, schedule or budget) of a construction project are fulfilled no exceptions?	0.75	0.73
Factor	Variables	Question	Factor Loading	Alpha (α)
F5	PIIT25	How often are process changes made to standard operating procedures for construction projects?	0.83	
	PIIT28	How often do non-adherence to standard processes result in successful completion of construction projects?	0.60	0.73

Conclusion

The aim of this study was to develop a framework for identifying external and organizational factors that contribute to project failures in the construction industry in KSA. The study employed a quantitative online survey method of research to elicit responses from 68 respondents who practice professionally as part of the construction industry in Hail, Saudi Arabia. Both descriptive and inferential statistical tools were used to analyze collected data. Twenty (20) out of the 45 items used for the survey were found to be significant for explaining the external and organizational factors impact on construction project failure in KSA.

In terms of Research Question 1 which states:

Can the external factors of company health, unrealistic stakeholders' expectations team physical proximity, and competitive threats be used as a risk assessment instrument

for assessing the level of contribution on project failures in the Kingdom of Saudi Arabia (KSA) construction industry?

All of the external items under these four categories were included in the Varimax rotation of the PCA. Furthermore, all the four had high factor loadings and therefore can be used as a risk assessment instrument. However, it must be analyzed under context of how the items relate to each other as seen in Table 8, Appendix C with the Spearman Correlation results.

For example, Table 8 shows a strong positive relationship between competing for bids on construction projects and the location of the project in relation to construction team members residence. The rs = .58 between CPMT35 and TPP42 highlights this relationship as a possible risk to project failure if not concerned when bidding for new construction projects. Location of construction projects in

Research Question 2 states:

Can the organizational factors of development process gaps, process non-adherence, productivity and infrastructure inadequate tools, inadequate training, project resources, insufficient funds be used as a risk assessment instrument for assessing the level of contribution on project failures in the Kingdom of Saudi Arabia (KSA) construction industry?

The organizational factors can be used as a risk assessment instrument for identifying non-project management contributors to project failures in terms of lessons learned. The factors that comprised organizational items can be used as areas of risk from the organizational process assets leveraged to complete the project. Their factor loadings were very high on Factors 1 and 2 and comprised Factor 3 solely. The rs between DPG8 and PNA14 shows a strong negative relationship of -.68. The negative relationship signals an affect between management organizational changes and the ability to meet ongoing construction project deadlines. This further highlight lack of succession planning between old and new management as a risk of construction project failures. The rs between DPG8 and PIIT29 also shows a negative relationship of -.54. This shows the breadth of development process gaps throughout the cost structure of the organization and its impact on construction project failures.

Another type of relationship between organizational and external factors that show an effect on construction project failures is CMPH37 and PNA15. Both items load high on Factor 2 and havears = .65. This positive relationship shows how not following standard construction procedures or processes may lead to the cancelling of ongoing construction projects. The fact that both items are from different factor categories show how revealing a risk instrument with combined organizational and external factors can be.

The strong negative relationship between CPMT36 and DPG8 whereby rs = 61 shows the effect of organizational changes in management impacts internal competition. Although both items loaded high on Factor 1, the internal reliability could not be determined due the existence of negative values. This further translates into the context of how internal competition is promoted and perceived within the organizations, who participated in the survey for this study, being unknown.

In summary the organizational and external factors represent other aspects that impact construction project failures in KSA beyond the common project management risks tied to the triple constraints. The risk assessment instrument resulting from the PCA and Spearman Correlation performed on the 45-Item Questionnaire has two limitations that must be mentioned and address as recommendations for further study.

The 45-Item Questionnaire reflects the contributors of risks from the organizational and external factors as experienced by the participants. Therefore, the strength and significance of the results reflect the organizations that the participants are employed by. It is recommended to use the 45-Item Questionnaire results from multiple participants across multiple construction organizations in order to increase the possibility of more variable loadings on the factors. For example, the industry and market mismatch, inadequate training, insufficient funds, and project resources did not have high correlations in Table 7 to warrant inclusion in the PCA based on the 68 participants. However, expanding the dataset would increase the chance of variables removed in this study, included of further studies.

Another aspect to consider when using the 45-Item Questionnaire is that it shows the areas for possible impact on failed construction projects. It does not measure the impact of these items on failed construction projects. The measure of impact requires multiple discriminate regression on archived construction projects with defined success or failed status (Jones, 2018). This is recommended for future studies on construction projects in KSA.

References

- Algahtany, M., Alhammadi, Y., & Kashiwagi, D. (2016). Introducing a New Risk Management Model to the Saudi Arabian Construction Industry. Procedia E n g i n e e r i n g , 1 4 5 , 9 4 0 - 9 4 7 . http://doi.org/10.1016/j.proeng.2016.04.122
- Bhati, N. (2018, June). Saudi Arabia's top 10 projects under construction in 2018. Construction Week. Retrieved from http://www.constructionweekonline.com /article-48418-the-saudi-arabian-constructionmarket-is-displaying-resilience-through-innovation/
- Bissonette, M. (2016). Project risk management? : a practical implementation approach. Newtown Square: Project Management Institute, Inc.
- Boghossian, Z. (2002). An Investigation Into the Critical Success Factors of Software Development Process, Time, and Quality. Pepperdine University. Retrieved

from https://search-proquest-com.proxy.mul. missouri. edu/docview/304370221/ previewPDF/ 48F2E28EC13C424DPQ/1?accountid=14576

- Hair, Joseph F., Anderson, Rolph E., Tatham, Ronald L., Black, W. C. (1998). Multivariate Data Analysis (5th ed.). Upper Saddle River: Prentice-Hall Inc.
- Heagney, J. (2012). Fundamentals of Project Management. (WorkSmart, Ed.) (4th ed.). New York: American ManagementAssociation.
- Hughes, D. L., Rana, N. P., & Simintiras, A. C. (2017a). The changing landscape of IS project failure: an examination of the key factors. Journal of Enterprise Information Management, 30(1), 142–165. http://doi.org/10.1108/JEIM-01-2016-0029
- Ikediashi, D. I., Ogunlana, S. O., & Alotaibi, A. (2014a). Analysis of project failure factors for infrastructure projects in Saudi Arabia: A multivariate approach. Journal of Construction in Developing Countries, 19(1), 35–52.
- Jiang, J. J., Klein, G., & Ellis, T. S. (2002). A Measure of Software Development Risk. Project Management Journal, 33(3), 30–41.
- Jones, A. H. (2018). Lessons learned from a business owners's risk assessment of capitalized internal software development projects. ELK Asia Pacific Journal of Project Management and Control, 5(1), 1–34. Retrieved from https://www.elkjournals.com /project-management-and-control.asp
- Lagerstrom, R., von Wurtemberg, L. M., Holm, H., & Luczak, O. (2012). Identifying factors affecting software development cost and productivity. Software Quality Journal, 20(2), 395–417. http://doi.org/10.1007/s11219-011-9137-8
- Lund, A., & Lund, M. (2015). Statistical tutorials and software guides. Retrieved from https://statistics. laerd.com/
- Momani, N. M., & Fadil, A. S. (2013). Risk Management Practices in the Saudi Business Organizations: A Case Study of the City of Jeddah. Journal of Business & Retail Management Research, 7(2), 96–105. Retrieved from http://search.ebscohost.com /login.aspx?direct=true&db=bth&AN=92894956&s ite=ehost-live
- Moshodi, T., Coetzee, C., Fourie, K., & Africa, S. (1996a). Inadequate stakeholder management and its effect on a coherent sinkhole risk management strategy? : The case of the Merafong Local Municipality, South

Africa disaster risk within Merafong Local Municipality? : An historic overview, 1–8.

- Oehmen, J., Olechowski, A., Robert Kenley, C., & Ben-Daya, M. (2014). Analysis of the effect of risk management practices on the performance of new product development programs. Technovation, 3 4 (8), 4 4 1 4 5 3. http://doi.org/10.1016/j.technovation.2013.12.005
- Olander, S. (2007a). Stakeholder impact analysis in construction project management. Construction Management and Economics, 25(3), 277–287. http://doi.org/10.1080/01446190600879125
- Olechowski, A., Oehmen, J., Seering, W., & Ben-Daya, M. (2016). The professionalization of risk management: What role can the ISO 31000 risk management principles play? International Journal of Project M a n a g e m e n t, 34(8), 1568-1578. http://doi.org/10.1016/j.ijproman.2016.08.002
- Onsite, V. (2018). Intersec: Saudia Arabia. Retrieved from ISSA2018_Market Report_KSAConstruction Overview_English02.pdf
- Othman, A., & Harinarain, N. (2009). Managing risks associated with the JBCC (principal building agreement) from the South African contractor 's perspective. Acta Structilia, 27(031), 83–119.
- Pinto, J. K., & Slevin, D. P. (1988). Critical Success Factors Across the Project Life Cycle, 19(3), 8.
- PMI. (2018). A Guide to the PROJECT MANAGEMENT BODY OF KNOWLEDGE - PMBOK Guide (6th ed.). Newtown Square: Project Management Institute, Inc.
- Suttrfield, J. S., Friday-Stroud, S. S., & Shivers-Blackwell, S. L. (2006). A Case Study of Project and Stakeholder Management Failures: Lessons Learned. Project Management Journal, 37(5), 26–36.
- Taghipour, M., Seraj, F., & Hassani, M. A. (2015). Risk analysis in the management of urban construction projects from the perspective, 4, 356–373

3 PNA14	A14 PNA15	PNA16	PNA17	PNA18	PNA19	PIIT20
.434	.434 .060	.009	084	.202	.223	248
35082	082 .461	263	.051	.077	.326	.119
270	270 .020	.191	.226	.436	082	.272
002	002203	147	.031	.312	175	258
042	042584	103	077	.160	335	174
86312	312036	.499	098	.058	155	.037
.727	.727011	021	353	325	.290	153
36011	011 .680	.005	114	247	.392	.317
021	021 .005	.757	385	345	041	.278
353	353114	385	.681	.322	186	129
325	325247	345	.322	.758	231	180
.290	.290 .392	041	186	231	.473	.359
37 - 153	153	.278	129	180	.359	.344
95117	117 .179	427	.225	.179	.190	010
.005	.005416	.407	173	209	310	235
.014	.014 .021	105	.160	.024	084	325
62183	183 .018	465	.277	.162	068	.004
.114	.114155	040	.016	.149	081	021
33 .497	.497 .037	.116	174	337	.273	108
DUTOS DU	00707 0	UT20	DUTOO	DUT20	17725124	ITONICO
			PIIT29	PIIT30	ITRN31	ITRN32
.363		016	038	.090	.221	.012
187		324	.134	221	138	201
355		.034	172	.151	.001	372
130		008	258	.151	.158	087
135		.044	.143	085	160	.240
233		.244	345	.296	.272	205
.497	511	057	.004	110	.034	.144
.037	.068	232	062	021	.009	.031
.116	6105	.057	052	.315	154	.016
174	4 .243	.024	.111	.118	.146	196
337	7 .331	078	154	.052	.207	320
.273	3344	161	.158	432	219	189
108	055	056	.045	163	337	060
075	5071	039	.094	338	193	104
007	7071	.313	.018	.262	018	.096
.135	.134	105	038	.004	.068	.095
.055	5 .016	099	041	446	.132	012
315	.184	028	.106	.151	125	163
.529	744	025	.069	236	.058	.112
		70044	T00.42	1105.42	1105.44	1105.45
138 CMPH39		TPP41	TPP42	USE43	USE44	USE45
	113364		-			
218 .003					_	
.046 .110			-			095
.291 .161			-			
	.312035					
.024 .083			9 .000			
.084115	115 .193	.269	9394	402	5 .056	.045
.225367	367137	249	9 .184	4243	3166	.242
.063 .187	.187 .180	.15	7138	08	8 .029	.176
.080167	167183	199	9 .263	3 .102	2040	137
.042 .013	.013176	23	6 .304	4 .17	7016	385
.247002	002105	14	2073	3408	8 .094	.30
200 .136	.136 .032	.03	6 .284	4458	8 .268	.29
.186083						
288 .227			1	0		1.
360072						
.182226						
		-		-	-	.12
.032 .167						

Appendix A Table 7: Anti Image Correlations

	DPG8	DPG9	DPG10	DPG11	DPG12	DPG13	PNA14	PNA15	PNA16	PNA17	PNA18	PNA19	PIIT20
PIIT27	272	.248	.170	.267	.031	.267	511	.068	105	.243	.331	344	055
PIIT28	016	324	.034	008	.044	.244	057	232	.057	.024	078	161	056
PIIT29	038	.134	172	258	.143	345	.004	062	052	.111	154	.158	.045
PIIT30	.090	221	.151	.151	085	.296	110	021	.315	.118	.052	432	163
ITRN31	.221	138	.001	.158	160	.272	.034	.009	154	.146	.207	219	337
ITRN32	.012	201	372	087	.240	205	.144	.031	.016	196	320	189	060
PRJRES33	159	015	.033	180	098	.235	140	.001	161	.078	090	.046	086
INF34	.107	.076	.294	.208	071	.160	.056	112	.170	258	.115	.116	028
CPMT35	.068	.070	- 263	231	.009	106	.006	.242	247	030	132	.103	.116
CPMT36	.025	.143	021	.103	.391	413	.073	336	236	.219	.313	168	068
CMPH37	.222	.030	333	236	387	057	.274	.197	.083	017	415	.213	150
CMPH38	305	218	.046	.291	.205	024	084	225	.063	080	042	247	200
CMPH39	113	.003	.110	.161	.312	.083	115	367	.187	167	.013	002	.136
TPP40	364	088	074	126	035	212	.193	137	.180	183	176	105	.032
TPP41	054	409	203	325	.242	029	.269	249	.157	199	236	142	.036
TPP42	121	.187	.225	314	057	.000	394	.184	138	.263	.304	073	.284
USE43	.073	182	047	.291	.062	.028	025	243	088	.102	.177	408	458
USE44	220	102	.121	.296	.216	066	.056	166	.029	040	016	.094	.268
USE45	.028	.018	095	430	212	034	.045	.242	.176	137	385	.309	.290

	PIIT21	PIIT22	PIIT23	PIIT24	PIIT25	PIIT26	PIIT27	PIIT28	PIIT29	PIIT30	ITRN31	ITRN32
PIIT27	071	071	.134	.016	.184	744	.533	167	135	.329	.150	068
PIIT28	039	.313	105	099	028	025	167	.709	036	116	.127	207
PIIT29	.094	.018	038	041	.106	.069	135	036	.813	026	234	088
PIIT30	338	.262	.004	446	.151	236	.329	116	026	.501	.016	.022
ITRN31	193	018	.068	.132	125	.058	.150	.127	234	.016	.612	197
ITRN32	104	.096	.095	012	163	.112	068	207	088	.022	197	.784
PRJRES33	.055	008	013	.034	.036	215	.142	.075	092	030	.244	151
INF34	126	.111	189	053	178	029	.003	047	318	079	.011	267
CPMT35	.126	223	224	.236	234	.126	085	030	.018	163	.169	.194
CPMT36	.235	241	.156	.275	.029	.016	.057	167	.202	160	149	.117
CMPH37	050	.082	.102	290	002	.328	186	038	.192	.171	.031	.121
CMPH38	186	.288	.360	.182	.032	167	.171	120	144	.091	020	.110
CMPH39	083	.227	072	226	.163	198	.028	.065	.098	.083	466	200
TPP40	387	.157	.081	.020	106	.063	.003	222	.028	.027	.023	.208
TPP41	352	.348	159	072	.006	.117	274	037	.098	.066	012	.316
TPP42	.446	420	.004	.355	103	186	.176	.014	.001	195	080	080
USE43	.005	.095	.422	107	.205	125	.230	.007	103	.199	.165	.138
USE44	185	.232	074	.092	.124	061	029	.089	.033	051	172	248
USE45	.114	049	402	203	184	.122	333	.159	.187	101	250	011

		PRJRES33	INF34	CPMT35	CPMT36	CMPH37	CMPH38	CMPH39	TPP40	TPP41	TPP42	USE43	USE44	USE45
-	PIIT27	.142	.003	085	.057	186	.171	.028	.003	274	.176	.230	029	333
	PIIT28	.075	047	030	167	038	120	.065	222	037	.014	.007	.089	.159
	PIIT29	092	318	.018	.202	.192	144	.098	.028	.098	.001	103	.033	.187
	PIIT30	030	079	163	160	.171	.091	.083	.027	.066	195	.199	~.051	101
	ITRN31	.244	.011	.169	149	.031	020	466	.023	012	080	.165	172	250
	ITRN32	151	267	.194	.117	.121	.110	200	.208	.316	080	.138	248	011
	PRJRES33	.848	058	.045	201	.040	.163	104	053	.166	009	.044	291	070
	INF34	058	.854	282	070	182	.018	.225	.059	178	118	191	.116	.010
	CPMT35	.045	282	.814	305	030	209	352	186	.291	.166	265	039	.123
	CPMT36	201	070	305	.725	270	073	.242	.176	057	.232	.095	.028	187
	CMPH37	.040	182	030	270	.688	309	273	045	055	184	010	244	.295
	CMPH38	.163	.018	209	073	309	.624	.074	.221	.157	298	.301	.228	393
	CMPH39	104	.225	352	.242	273	.074	.650	079	003	134	142	.242	.122
	TPP40	053	.059	186	.176	045	.221	079	.848	.230	342	.233	.098	102
	TPP41	.166	178	.291	057	055	.157	003	.230	.726	277	131	055	.008
	TPP42	009	118	.166	.232	184	298	134	342	- 277	.725	145	158	.057
	USE43	.044	191	265	.095	010	.301	142	.233	131	145	.696	142	449
	USE44	291	.116	039	.028	244	.228	.242	.098	055	158	142	.681	232
	USE45	070	.010	.123	187	.295	393	.122	102	.008	.057	449	232	.475

Appendix B Table 8: Spearman's Correlation

	DPG8	DPG9	DPG12	PNA14	PNA15	PNA16	PIIT25	РШТ28	PIIT29	CPMT35	CPMT36	CMPH37	TPP40	TPP41	TPP42	USE44	USE45
DPG8	1.000	.593**	.248*	675**	474**	596**	182	141	544	689**	605	258*	.686**	.379**	.599^^	.000	066
DPG9	.593**	1.000	.037	377**	601~	380**	217	.000	256"	663**	568**	335*"	.305*	.484**	.512**	.409**	.293*
DPG12	.248*	.037	1.000	180	.376**	476**	274*	.294*	-,137	-,108	-,216	.539**	.588**	.317**	.391~*	285	228
PNA14	.675**	- .377**	180	1.000	.360**	.504 ''	164	021	.597**	.490 **	.331**	.126	477**	468**	-,431"	.014	.121
PNA15	- .474**	- .601**	.376**	.360**	1.000	.196	.088	.381**	.343*^	.542**	.450**	.646	.016	114	237	228	251*
PNA16	- .596**	- .380**	476**	.504**	.196	1.000	.225	053	.359**	.502**	.402**	011	567**	457**	545**	.170	.239*
PIIT25	182	217	274 [*]	164	.088	.225	1.000	.171	014	.264	.241	068	143	192	233	060	.124
PIIT28	-,141	.000	,294*	021	.381**	053	,171	1.000	.150	.120	.066	.390**	.214	.266*	.106	084	144
PHT29	- .544''	256*	137	.597**	.343**	.359**	014	.150	1.000	.331"	.215	.126	351**	209	265*	.131	.122
CPMT35	- .689**		108	.490**	.542**	.502**	.264*	.120	.331**	1.000	.802**	.447**	383**	582**	581**	341**	147
CPMT36	- .605**	-	216	.331"	.450**	,402**	,241	.066	.215	.802	1.000	.352**	-,459**	492**	559"	234	117
CMPH37	258*		.539**	.126	.646""	011	068	.390**	.126	.447**	.352**	1.000	.251*	.099	.062	273	308*
TPP40	.686**	.305*	.588**	477**	.016	567**	143	.214	351**	383**	459~~	.251*	1.000	.448**	.700~*	249	295*
TPP41	.379**	,484**	.317**	468**	-,114	457**	192	.266*	209	582**	492**	.099	.448**	1.000	.624**	.248*	.136
TPP42	.599"	.512**	.391**	431**	237	545**	233	.106	265	581**	559~~	.062	.700**	.624**	1.000	.043	.005
USE44	.000.	.409**	285*	.014	-,228	,170	060	084	.131	341	234	273*	-,249^	.248*	.043	1.000	.528**
USE45	066	,293'	-,228	.121	251	.239'	.124	144	.122	-,147	117	308*	295	.136	.005	.528**	1.000

Appendix C

Factor				Extra	action Sums of	Squared			
	Ir	nitial Eigenv			Loadings		Rotation		quared Loadings
			Cumulative		% of	Cumulative		% of	
	Total	Variance	%	Total	Variance	%	Total	Variance	Cumulative %
1	6.734	33.668	33.668	6.734	33.668	33.668	5.553	27.766	27.766
2	3.623	18.113	51.782	3.623	18.113	51.782	3.020	15.100	42.866
3	2.298	11.488	63.270	2.298	11.488	63.270	2.715	13.577	56.443
4	1.412	7.062	70.332	1.412	7.062	70.332	2.318	11.591	68.034
5	1.013	5.067	75.399	1.013	5.067	75.399	1.473	7.365	75.399
6	.732	3.662	79.061						
7	.632	3.159	82.221						
8	.546	2.728	84.948						
9	.502	2.512	87.460						
10	.418	2.088	89.548						
11	.374	1.870	91.418						
12	.333	1.667	93.085						
13	.298	1.490	94.575						
14	.264	1.319	95.895						
15	.204	1.018	96.912						
16	.176	.878	97.790						
17	.153	.765	98.556						
18	.130	.651	99.206						
19	.089	.446	99.652						
20	.070	.348	100.000						

Table 9: Total Explained Variance